• Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise 

      Hancock, Matthew; Hafstad, Anne Dragøy; Nabeebaccus, Adam A.; Catibog, Norman; Logan, Angela; Smyrnias, Ioannis; Hansen, Synne Simonsen; Lanner, Johanna; Schröder, Katrin; Murphy, Michael P.; Shah, Ajay M.; Zhang, Min (Journal article; Tidsskriftartikkel; Peer reviewed, 2018-12-27)
      Regular exercise has widespread health benefits. Fundamental to these beneficial effects is the ability of the heart to intermittently and substantially increase its performance without incurring damage, but the underlying homeostatic mechanisms are unclear. We identify the ROSgenerating NADPH oxidase-4 (Nox4) as an essential regulator of exercise performance in mice. Myocardial Nox4 levels ...
    • NADPH oxidase 2 mediates myocardial oxygen wasting in obesity 

      Hafstad, Anne Dragøy; Hansen, Synne Simonsen; Lund, Jim; Santos, Celio X.C.; Boardman, Neoma Tove; Shah, Ajay M.; Aasum, Ellen (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-02-19)
      Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO<sub>2</sub>) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, reactive oxygen species (ROS) may play an important role. One of the ...
    • Nox4 regulates InsP3 receptor‐dependent Ca2+ release into mitochondria to promote cell survival 

      Beretta, Matteo; Santos, Celio X.C.; Molenaar, Chris; Hafstad, Anne Dragøy; Miller, Chris CJ; Revazian, Aram; Betteridge, Kai; Schröder, Katrin; Streckfuß-Bömeke, Katrin; Doroshow, James H; Fleck, Roland A; Su, Tsung-Ping; Belousov, Vsevelod; Parsons, Maddy; Shah, Ajay M. (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-08-10)
      Cells subjected to environmental stresses undergo regulated cell death (RCD) when homeostatic programs fail to maintain viability. A major mechanism of RCD is the excessive calcium loading of mitochondria and consequent triggering of the mitochondrial permeability transition (mPT), which is especially important in post‐mitotic cells such as cardiomyocytes and neurons. Here, we show that stress‐induced ...
    • Overexpression of NOX2 Exacerbates AngII‐Mediated Cardiac Dysfunction and Metabolic Remodelling 

      Hansen, Synne; Pedersen, Tina Myhre; Marin, Julie; Boardman, Neoma Tove; Shah, Ajay M.; Aasum, Ellen; Hafstad, Anne Dragøy (Journal article; Tidsskriftartikkel; Peer reviewed, 2022-01-10)
      The present study aimed to examine the effects of low doses of angiotensin II (AngII) on cardiac function, myocardial substrate utilization, energetics, and mitochondrial function in C57Bl/6J mice and in a transgenic mouse model with cardiomyocyte specific upregulation of NOX2 (csNOX2 TG). Mice were treated with saline (sham), 50 or 400 ng/kg/min of AngII (AngII50 and AngII400) for two weeks. In ...
    • Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2a-mediated stress signaling 

      Santos, Celio X.C.; Hafstad, Anne Dragøy; Beretta, Matteo; Zhang, Min; Molenaar, Chris; Kopec, Jola; Fotinou, Dina; Murray, Thomas V.; Cobb, Andrew M.; Martin, Daniel; Zeh Silva, Maira; Anilkumar, Narayana; Schröder, Katrin; Shanahan, Catherine M.; Brewer, Alison C.; Brandes, Ralf P.; Blanc, Eric; Parsons, Maddy; Belousov, Vsevelod; Cammack, Richard; Hider, Robert C.; Steiner, Roberto A.; Shah, Ajay M. (Journal article; Tidsskriftartikkel; Peer reviewed, 2016-01-07)
      Phosphorylation of translation initiation factor 2α (eIF2α) attenuates global protein synthesis but enhances translation of activating transcription factor 4 (ATF4) and is a crucial evolutionarily conserved adaptive pathway during cellular stresses. The serine–threonine protein phosphatase 1 (PP1) deactivates this pathway whereas prolonging eIF2α phosphorylation enhances cell survival. Here, we show ...